How to do OK at GeoGuessr using simple statistics Matthew Pawley

Example (a) – what country is this?

Example (b) – what country is this?

Example (c) – what country is this?

How do humans perform photo geolocation?

(a) Italy (Rome)

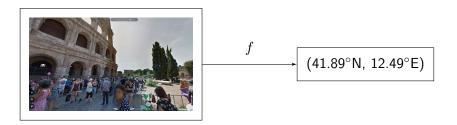
(b) Italy (Pisa)

(c) South Africa

	Method	Description
(a)	Memorisation	"I've seen it before"
(b)	Scene matching	"It is similar to something I've seen before"
(c)	Semantic reasoning	"I used fluid logic and contextual information"

Problem formulation

- $\begin{aligned} \mathcal{X} & \text{space of all Google Street View images} \\ \mathcal{Y} & \text{space of all the corresponding locations} \\ \mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n & \text{training data (labelled examples)} \end{aligned}$
- **Question:** Given an image $x \in \mathcal{X}$, what is its location $y \in \mathcal{Y}$?



The k-nearest-neighbours (k-NN) algorithm

Figure: A new image, x, whose location y is unknown.

Figure: The k = 3 most similar training images and their (known) locations.

 $\hat{y} = London^1$

¹This step is non-trivial. Hayes and Efros (2008) use 'mean shift mode'.

Hayes and Efros (2008) - k-NN performs well

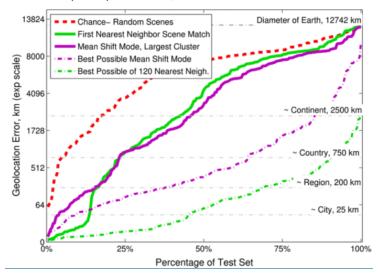


Figure: 120-NN (dashed green) does a pretty good job, much better than chance (dashed red).

Hayes and Efros (2008) - feature engineering

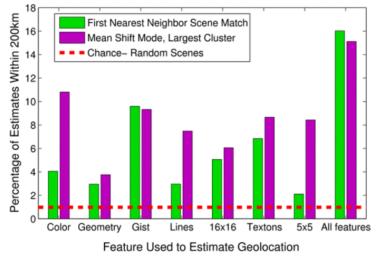


Figure: Some visual characteristics are more useful for geolocation than others.

Hypothesis spaces and types of error

Consider k-NN with k = 1:

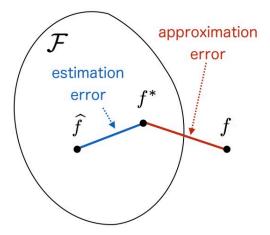
• The estimate \hat{y} is just the location of the most similar image.

• The predictive model \hat{f} is a piecewise constant function, i.e.

$$\hat{f} \in \mathcal{F} := \{ \text{piecewise constant functions } \mathcal{X} \to \mathcal{Y} \}.$$

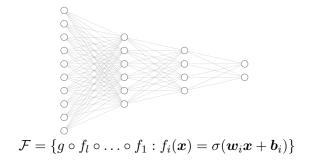
Choosing an algorithm (1-NN) \equiv choosing a function space (\mathcal{F})

Error decomposition



VC inequality: bounds these errors in terms of n and $\mathcal F$.

Neural networks



► *F* is very big and can approximate a wide class of functions ⇒ small approximation error

• Large \mathcal{F} and small $n \Rightarrow$ likely to overfit.

What is a 'simple model'?

Scenario 1:

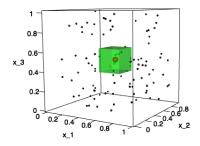
- 1. A company gives you some data.
- 2. You fit a linear model to it.
- 3. You give the company the values of the intercept and gradient.
- 4. The company can make predictions and you get paid.

Scenario 2:

- 1. A company gives you some data.
- 2. You fit a k-NN model to it.
- 3. You give the company their data.
- 4. They are angry because you did nothing.

k-NN and the curse of dimensionality

- f bdd and α -Hölder cts. \Rightarrow convergence rate = $\mathcal{O}(n^{-2\alpha/(d+2\alpha)})$.
 - Let $\mathcal{X} = [0, 1]^d$.
 - Suppose our n training samples are distributed uniformly in \mathcal{X} .
 - On average, the volume of the smallest hypercube containing the k-nearest-neighbours of a point x will be V ≈ k/n.
 - The side length of the hypercube is $l \approx (k/n)^{1/d}$.



k-NN and the curse of dimensionality

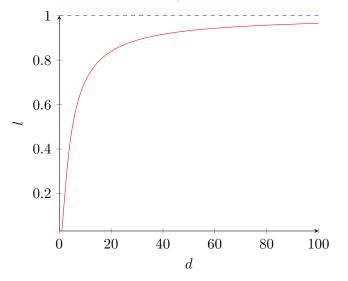


Figure: As the dimension of \mathcal{X} grows, our 'local neighbourhood' becomes pretty much the whole space! (Here k = 3 and n = 100.)

Conclusions

- 1. Geolocating a photograph is challenging, but a simple model can do quite well.
- 2. Statistical learning is an illuminating and *rigorous* way of doing things.
- 3. If you think about it, GeoGuessr is just functional analysis.